如图示,四棱锥P----ABCD的底面是边长为1的正方形,PA^CD,PA = 1, PD = ,E为PD上一点,PE = 2ED. (1) 求证:PA ^平面ABCD; (2) 求二面角D---AC---E的正切值; (3) 在侧棱PC上是否存在一点F,使得BF // 平面AEC?若存在,指出F点的位置,并证明;若不存在, 说明理由.
已知函数f(x)=|x﹣4|﹣t,t∈R,且关于x的不等式f(x+2)≤2的解集为[﹣1,5]. (1)求t值; (2)a,b,c均为正实数,且a+b+c=t,求证:++≥1.
在直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知圆C的圆心的极坐标为(,),半径r=,点P的极坐标为(2,π),过P作直线l交圆C于A,B两点. (1)求圆C的直角坐标方程;(2)求|PA|•|PB|的值.
如图,已知AB是⊙O的直径,CD是⊙O的切线,C为切点,连接AC,过点A作AD⊥CD于点D,交⊙O于点E. (Ⅰ)证明:∠AOC=2∠ACD;(Ⅱ)证明:AB•CD=AC•CE.
已知函数f(x)=ex﹣m﹣ln(2x). (Ⅰ)设x=1是函数f(x)的极值点,求m的值并讨论f(x)的单调性; (Ⅱ)当m≤2时,证明:f(x)>﹣ln2.
如图,已知椭圆的右顶点为A(2,0),点P(2e,)在椭圆上(e为椭圆的离心率). (1)求椭圆的方程; (2)若点B,C(C在第一象限)都在椭圆上,满足,且,求实数λ的值.