已知盒中装有仅颜色不同的玻璃球6个,其中红球2个、黑球3个、白球1个. (1)从中任取1个球, 求取得红球或黑球的概率;(2)列出一次任取2个球的所有基本事件;(3)从中取2个球,求至少有一个红球的概率.
已知函数在与时都取得极值 (1)求的值; (2)若对,不等式恒成立,求的取值范围.
在圆上任取一点P,过点P作x轴的垂线段PD,D为垂足.当点P在圆上运动时,线段PD的中点M的轨迹方程,指出轨迹是什么?并求出该轨迹的焦点和离心率.
设函数. (1)求函数的单调区间. (2)若方程有且仅有三个实根,求实数的取值范围.
已知命题方程有两个不等的正实数根;命题方程无实数根。若“或”为真命题,求的取值范围.
(本小题满分13分)已知函数. (1)若对于区间内的任意,总有成立,求实数的取值范围; (2)若函数在区间内有两个不同的零点,求: ①实数的取值范围;②的取值范围.