已知盒中装有仅颜色不同的玻璃球6个,其中红球2个、黑球3个、白球1个. (1)从中任取1个球, 求取得红球或黑球的概率;(2)列出一次任取2个球的所有基本事件;(3)从中取2个球,求至少有一个红球的概率.
(本小题满分6分)(1)计算(2)已知,求的值.
(本小题满分6分)求经过两条直线和的交点,并且与直线垂直的直线方程的一般式.
(本小题满分14分)如图所示,在一个特定时段内,以点E为中心的10海里以内海域被设为警戒水域.点E正北40海里处有一个雷达观测站A,某时刻测得一艘匀速直线行驶的船只位于点A北偏东30°且与点A相距100海里的位置B,经过2小时又测得该船已行驶到点A北偏东60°且与点A相距20海里的位置C. (1)求该船的行驶速度(单位:海里/小时);(2)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.
(本小题满分13分)已知⊙C经过点、两点,且圆心C在直线上.(1)求⊙C的方程;(2)若直线与⊙C总有公共点,求实数的取值范围.
(本小题满分13分)如图,在直三棱柱ABC-A1B1C1中,,,是的中点,是中点.(1)求证:∥面;(2)求直线EF与直线所成角的正切值;(3)设二面角的平面角为,求的值.