已知函数,(其中常数)(1)当时,求的极大值;(2)试讨论在区间上的单调性;(3)当时,曲线上总存在相异两点、,使得曲线在点、处的切线互相平行,求的取值范围.
已知等差数列的前n项和为,首项,公差,且成等比数列。 (1)求数列的通项公式及; (2)记=+++…+,=+ ++… +, 当n≥2时,试比较与的大小。
设函数. (1)求函数的单调区间和极值; (2)若关于x的方程有三个不同实根,求实数的取值范围; (3)已知当恒成立,求实数k的取值范围。
已知函数在处取得极值,过点作曲线的切线,(1)求此切线的方程.(2)求切线与函数的图象围成的平面图形的面积。
某商场从生产厂家以每件20元购进一批商品,若该商品零售价定为p元,则销量Q(单位:件)与零售价p(单位:元)有如下关系:.问该商品售价定为多少元时毛利润L最大,并求最大毛利润(毛利润=销售收入-进货支出)。
如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1=1.D是棱CC1上的中点,P是AD的延长线与A1C1的延长线的交点. (1)求二面角A-A1D-B的平面角的余弦值; (2)求点C到平面B1DP的距离.