已知椭圆的方程为:,其焦点在轴上,离心率.(1)求该椭圆的标准方程;(2)设动点满足,其中M,N是椭圆上的点,直线OM与ON的斜率之积为,求证:为定值.(3)在(2)的条件下,问:是否存在两个定点,使得为定值?若存在,给出证明;若不存在,请说明理由.
抛物线的顶点在原点,以x轴为对称轴,经过焦点且倾斜角为135°的直线被抛物线所截得的弦长为8,试求抛物线方程.
已知函数(1) 若的一个极值点到直线的距离为1,求的值;(2) 求方程的根的个数.
某工厂生产某种产品,每日的成本(单位:万元)与日产量x(单位:吨)满足函数关系式,每日的销售额S(单位:万元)与日产量x的函数关系式已知每日的利润,且当时,.(1)求的值;(2)当日产量为多少吨时,每日的利润可以达到最大,并求出最大值。
已知函数(为实数).(1)当时, 求的最小值;(2)若在上是单调函数,求的取值范围.
已知 求证: