如图,四棱锥的底面是正方形,⊥平面,,点E是SD上的点,且.(1)求证:对任意的,都有AC⊥BE;(2)若二面角C-AE-D的大小为,求的值
(本小题满分10分)选修4-1几何证明选讲如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E.证明: AD·DE=2PB2.
已知函数(Ⅰ)若函数在上位增函数,求的取值范围.(Ⅱ)求在区间上的最小值;(Ⅲ)若在区间上恰有两个零点,求的取值范围.
已知椭圆:的离心率为,右顶点是抛物线的焦点.直线:与椭圆相交于,两点.(Ⅰ)求椭圆的方程;(Ⅱ)如果,点关于直线的对称点在轴上,求的值.
如图,在四棱锥P—ABCD中,PA⊥AD,AB∥CD,CD⊥AD,AD =" CD" =" 2AB" = 2,E为PC的中点,DE=EC(1)求证:平面(2)设PA = a,若平面EBD与平面ABCD所成锐二面角的为,求a的值。
(1)设点是区域内的随机点,求函数在区间上是增函数的概率;(2)设点是区域内的随机点,求函数在区间上是增函数的概率;