(本题满分15分)已知点在抛物线上,点到抛物线的焦点F的距离为2.(Ⅰ)求抛物线的方程;(Ⅱ)已知直线与抛物线C交于O (坐标原点),A两点,直线与抛物线C交于B,D两点. (ⅰ) 若 |,求实数的值;(ⅱ) 过A,B,D分别作y轴的垂线,垂足分别为A1,B1,D1.记分别为三角形OAA1和四边形BB1D1D的面积,求的取值范围.
(本小题满分12分)如图,曲线由上半椭圆和部分抛物线 连接而成,的公共点为,其中的离心率为. (Ⅰ)求的值; (Ⅱ)过点的直线与分别交于(均异于点),若,求直线的方程.
(本小题满分12分)如图,三棱柱中,,,平面平面,与相交于点.(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值.
(本小题满分12分)一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取个作为样本,称出它们的重量(单位:克),重量分组区间为,,,,由此得到样本的重量频率分布直方图(如图),(Ⅰ)求的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;(Ⅱ)从盒子中随机抽取个小球,其中重量在内的小球个数为,求的分布列和数学期望. (以直方图中的频率作为概率).
(本小题满分12分)已知为等差数列,且满足,.(Ⅰ)求数列的通项公式;(Ⅱ)记的前项和为,若成等比数列,求正整数的值.
在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,过点的直线的参数方程为 (为参数),直线与曲线相交于两点. (Ⅰ)写出曲线的直角坐标方程和直线的普通方程; (Ⅱ)若,求的值.