(本题满分15分)已知点在抛物线上,点到抛物线的焦点F的距离为2.(Ⅰ)求抛物线的方程;(Ⅱ)已知直线与抛物线C交于O (坐标原点),A两点,直线与抛物线C交于B,D两点. (ⅰ) 若 |,求实数的值;(ⅱ) 过A,B,D分别作y轴的垂线,垂足分别为A1,B1,D1.记分别为三角形OAA1和四边形BB1D1D的面积,求的取值范围.
已知函数()在时有极值,其图象在点处的切线与直线平行。 (1)求m,n的值; (2)求函数的单调区间。
某工厂有A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天8h计算,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?
在△ABC中,已知B=45°,D是BC边上的一点,AB=5,AC="14," DC=6,求AD的长.
本小题满分14分) 定义运算,记函数 (Ⅰ)已知,且,求的值; (Ⅱ)在给定的直角坐标系中,用“五点法”作出函数在 一个周期内的简图;(Ⅲ)求函数的对称中心、最大值及相应的值.
数列{an}满足Sn=2n-an,n∈N,先计算前4项后猜想an,并用数学归纳法证明