已知数列{an}的前n项和为Sn,点(n,)在直线y=x+上.数列{bn}满足bn+2-2bn+1+bn=0(n∈N*),b3=11,且其前9项和为153.(1)求数列{an},{bn}的通项公式;(2)设cn=,数列{cn}的前n项和为Tn,求使不等式Tn>对一切n∈N*都成立的最大正整数k的值.
如图,正三棱柱的底面边长为,侧棱长为,点在棱上. (1)若,求证:直线平面; (2)是否存在点,使平面⊥平面,若存在,请确定点的位置,若不存在,请说明理由; (3)请指出点的位置,使二面角平面角的大小为.
箱中装有15张大小、重量一样的卡片,每张卡片正面分别标有1到15中的一个号码,正面号码为的卡片反面标的数字是(卡片正反面用颜色区分). (1)如果任意取出一张卡片,试求正面数字大于反面数字的概率; (2)如果同时取出两张卡片,试求他们反面数字相同的概率.
内接于以O为圆心,1为半径的圆,且. (1)求数量积,,; (2)求的面积.
已知函数f(x)=(x2+)(x+a)(aR).(1)若函数f(x)的图象上有与x轴平行的切线,求a的范围;(2)若(-1)=0,(I)求函数f(x)的单调区间;(II)证明对任意的x1、x2(-1,0),不等式|f(x1)-f(x2)|<恒成立.
设复数满足,且在复平面上对应的点在第二、四象限的角平分线上,若,求和的值。