如图,抛物线y =ax2+bx+c过点A(-1,0),且经过直线y =x-3与x轴的交点B及与y轴的交点C.(1)求点B、C的坐标;(2)求抛物线的解析式; (3)求抛物线的顶点M的坐标;(4)在直线y =x-3上是否存在点P,使△CMP是等腰三角形?若存在,求出满足条件的P点坐标;若不存在,说明理由.
在一个不透明的口袋里有分别标注2、4、6的3个小球(小球除数字不同外,其余都相同),另有3张背面完全一样、正面分别写有数字6、7、8的卡片.现从口袋中任意摸出一个小球,再从这3张背面朝上的卡片中任意摸出一张卡片. (1)请你用列表或画树状图的方法,表示出所有可能出现的结果; (2)小红和小莉做游戏,制定了两个游戏规则: 规则1:若两次摸出的数字,至少有一次是“6”,小红赢;否则,小莉赢. 规则2:若摸出的卡片上的数字是球上数字的整数倍时,小红赢;否则,小莉赢. 小红要想在游戏中获胜,她会选择哪一种规则,并说明理由.
一辆汽车沿着一条南北向的公路来回行驶,某一天早晨从A地出发,晚上最后到达B地.约定向北为正方向(如:+7.4表示汽车向北行驶7.4千米,-6则表示汽车向南行驶6千米),当天的行驶记录如下(单位:千米):+18.3,-9.5, +7.1,-14,-6.2,+13,-6.8,-8.5.请你根据计算回答以下问题: (1)B地在A地何方,相距多少千米? (2)若汽车行驶每千米耗油0.0642升,那么这一天共耗油多少升?(结果保留一位小数)
观察+=(1-)+(-)=1-= 计算+++……+
把下列各数在数轴上表示出来,并且用“<”号把它们连结起来: -3,-(-4),0,|-2.5|,-1