如图1,正方形ABCD和正方形QMNP,∠M =∠B,M是正方形ABCD的对称中心,MN交AB于F,QM交AD于E.求证:ME = MF.如图2,若将原题中的“正方形”改为“菱形”,其他条件不变,探索线段ME与线段MF的关系,并加以证明.如图3,若将原题中的“正方形”改为“矩形”,且AB = mBC,其他条件不变,探索线段ME与线段MF的关系,并说明理由.根据前面的探索和图4,你能否将本题推广到一般的平行四边形情况?若能,写出推广命题;若不能,请说明理由.
如图,王明站在地面B处用测角仪器测得楼顶点E的仰角为45°,楼顶上旗杆顶点F的仰角为55°,已知测角仪器高AB=1.5米,楼高CE=14.5米,求旗杆EF的高度(精确到1米).(供参考数据:sin55°≈0.8,cos55°≈0.57,tan55°≈1.4).
已知二次函数的图象经过点(-2,-5)、(1,4).(1)求这个二次函数的解析式;(2)不用列表,在下图中画出函数图象,观察图象写出y > 0时,x的取值范围.
甲、乙、丙三个教师承担本学期期末考试的第17题的网上阅卷任务,若由这三人中的某一人独立完成阅卷任务,则甲需要15小时,乙需要10小时,丙需要8小时。(1)如果甲、乙、丙三人同时改卷,那么需要多少时间完成?(2)如果按照甲、乙、丙、甲、乙、丙、……的次序轮流阅卷,每一轮中每人各阅卷1小时。那么要多少小时完成?(3)能否把(2)题所说的甲、乙、丙的次序作适当调整,其余的不变,使得完成这项任务的时间至少提前半小时?(答题要求:如认为不能,需要说明理由;如认为能,请至少说出一种轮流的次序,并求出相应能提前多少时间完成阅卷任务)
某蔬菜公司收购到某种蔬菜280吨,准备加工后上市销售.该公司的加工能力是:每天可以精加工12吨或者粗加工32吨.现计划用15天完成加工任务,该公司应安排几天粗加工,几天精加工,才能按期完成任务?如果每吨蔬菜粗加工后的利润为1500元,精加工后为3000元,那么该公司出售这些加工后的蔬菜共可获利多少元?
张老师带领该校七年级“三好学生”去开展夏令营活动,甲旅行社说:“如果老师买全票一张,则学生可享受半价优惠。”乙旅行社说:“包括老师在内按全票价的6折优惠。”若全票价为240元,当学生人数为多少人时,两家旅行社的收费一样多?