(本题满分15分)已知中心在原点O,焦点在x轴上,离心率为的椭圆过点(,).(Ⅰ) 求椭圆的方程;(Ⅱ) 设不过原点O的直线l与该椭圆交于P,Q两点,满足直线OP,PQ,OQ的斜率依次成等比数列,求△OPQ面积的取值范围.
已知等差数列{an}中,a2=8,前10项和S10=185. (1)求通项an; (2)若从数列{an}中依次取第2项、第4项、第8项…第2n项……按原来的顺序组成一个新的数列{bn},求数列{bn}的前n项和Tn.
数列{an}中,a1=8,a4=2且满足an+2=2an+1-an n∈N (1)求数列{an}的通项公式; (2)设Sn=|a1|+|a2|+…+|an|,求sn; (3)设bn=( n∈N),Tn=b1+b2+…+bn( n∈N),是否存在最大的整数m,使得对任意n∈N,均有Tn>成立?若存在,求出m的值;若不存在,请说明理由。
在数列中,,. (1)求数列的前项和;(2)证明不等式,对任意皆成立。
已知等差数列的前项和为,,且,. ⑴.求数列的通项公式;⑵.求证:.