(本题满分15分)已知中心在原点O,焦点在x轴上,离心率为的椭圆过点(,).(Ⅰ) 求椭圆的方程;(Ⅱ) 设不过原点O的直线l与该椭圆交于P,Q两点,满足直线OP,PQ,OQ的斜率依次成等比数列,求△OPQ面积的取值范围.
已知函数(Ⅰ)证明:若则 ;(Ⅱ)如果对于任意恒成立,求的最大值.
如图,在轴右侧的动圆⊙与⊙:外切,并与轴相切.(Ⅰ)求动圆的圆心的轨迹的方程;(Ⅱ)过点作⊙:的两条切线,分别交轴于两点,设中点为.求的取值范围.
如图,在三棱锥中, 两两垂直且相等,过的中点作平面∥,且分别交于,交的延长线于.(Ⅰ)求证:平面;(Ⅱ)若,求二面角的余弦值.
已知数列,满足:,;()(Ⅰ)计算,并求数列,的通项公式;(Ⅱ)证明:对于任意的,都有.
已知函数.(Ⅰ)求的最小正周期和最大值;(Ⅱ)在△中,分别为角的对边,为△的面积. 若,,,求