设,函数.(1)求的定义域,并判断的单调性;(2)当定义域为时,值域为,求、的取值范围.
(1)设为攻关期满时获奖的攻关小组数,求的分布列及;(2)设为攻关期满时获奖的攻关小组数与没有获奖的攻关小组数之差的平方,记“函数在定义域内单调递减”为事件,求事件的概率
侧棱PA=PD=,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.(1)求证:PO⊥平面ABCD;(2)求异面直线PB与CD所成角的余弦值;(3)线段AD上是否存在点Q,使得它到平面PCD的距离为?若存在,求出的值;若不存在,请说明理由.
数列{an}的前n项和记为Sn,(1)求{an}的通项公式;(2)等差数列{bn}的各项为正,其前n项和为Tn,且,又成等比数列,求Tn
设a为实数,记函数的最大值为g(a).(1)设t=,求t的取值范围,并把f(x)表示为t的函数m(t);(2)求g(a);(3)试求满足的所有实数a.
设函数.(1)在区间上画出函数的图像;(2)设集合. 试判断集合和 之间的关系,并给出证明;(3)当时,求证:在区间上,的图像位于函数图像的上方.