如图,已知抛物线C1:的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点A的横坐标是. 求点坐标及的值; 如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向左平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点A成中心对称时,求C3的解析式; 如图(2),点Q是x轴负半轴上一动点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、E为顶点的三角形是直角三角形时,求顶点N的坐标.
已知:如图,在△ABC中,∠ACB=90°,CM是斜边AB的中线,过点M作CM的垂线与边AC和CB的延长线分别交于点D和点E.(1)求证:MC•BC=DM•AC;(2)若tanA=,AD=6,求BE的长.
已知直线y=kx+b经过点A(5,0),B(1,4).(1)求直线AB的解析式;(2)若直线y=2x-4与直线AB相交于点C,求点C的坐标;(3)根据图象,写出关于x的不等式2x-4>kx+b的解集.
如图,抛物线y = —2x 2 +x+1交y轴于点A,交x轴正半轴于点B.P为线段AB上一动点,作直线PC⊥PO,交过点B垂直于x轴的直线于点C.过P点作直线MN平行于x轴,交y轴于点M,交过点B垂直于x轴的直线于点N.(1)求线段AB长;(2)证明:OP=PC;(3)当点P在第一象限时,设AP长为m,⊿OBC的面积为S,请求出S与m间的函数关系式,并写出自变量m的取值范围;(4)当点P在线段AB上移动时,点C也随之在直线x=1上移动,⊿PBC是否可能成为等腰三角形?如果可能,直接写出所有能使⊿PBC成为等腰三角形的点P的坐标;如果不可能,请说明理由.
把两个全等的等腰直角三角形ABC和EFG(其直角边长均为4)叠放在一起(如图①),且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点逆时针旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分(如图②).(1)在上述旋转过程中,BH与CK有怎样的数量关系?四边形CHGK的面积有何变化?证明你发现的结论;(要有辅助线哟!)(2)连接HK,在上述旋转过程中,设BH=x,△GKH的面积为y,求y与x之间的函数关系式,并写出自变量x的取值范围;(3)在(2)的前提下,是否存在某一位置,使△GKH的面积恰好等于△ABC面积的,若存在,求出此时x值;若不存在,说明理由。
丹东市某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?