已知,.(1)求的值; (2)求的值;(3)若且,求的值
(1)计算:(2)计算:
(本小题满分14分)若集合具有以下性质:①,;②若,则,且时,.则称集合是“好集”.(Ⅰ)分别判断集合,有理数集是否是“好集”,并说明理由;(Ⅱ)设集合是“好集”,求证:若,则;(Ⅲ)对任意的一个“好集”,分别判断下面命题的真假,并说明理由.命题:若,则必有;命题:若,且,则必有;
(本小题满分13分)已知椭圆:的右焦点为,离心率为.(Ⅰ)求椭圆的方程及左顶点的坐标;(Ⅱ)设过点的直线交椭圆于两点,若的面积为,求直线的方程.
(本小题满分13分)已知函数,其中是常数.(Ⅰ)当时,求在点处的切线方程;(Ⅱ)求在区间上的最小值.
(本小题满分13分)在四棱锥中,底面是菱形,.(Ⅰ)若,求证:平面;(Ⅱ)若平面平面,求证:;(Ⅲ)在棱上是否存在点(异于点)使得∥平面,若存在,求的值;若不存在,说明理由.