(本题满分14分) 设等差数列{an}的首项a1为a,公差d=2,前n项和为Sn.(Ⅰ) 若S1,S2,S4成等比数列,求数列{an}的通项公式;(Ⅱ) 证明:n∈N*, Sn,Sn+1,Sn+2不构成等比数列.
某校从高一年级学生中随机抽取40名学生作为样本,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六组:,,后得到如图的频率分布直方图. (Ⅰ)求图中实数的值; (Ⅱ)若该校高一年级共有学生500人,试估计该校高一年级在考试中成绩不低于60分的人数; (Ⅲ)若从样本中数学成绩在与两个分数段内的学生中随机选取两名学生,试用列举法求这两名学生的数学成绩之差的绝对值不大于10的概率.
先后随机投掷2枚正方体骰子,其中表示第枚骰子出现的点数,表示第枚骰子出现的点数. (Ⅰ)求点在直线上的概率; (Ⅱ)求点满足的概率.
已知函数 (1)用五点法画出它在一个周期内的闭区间上的图象; (2)求函数的单调增区间; (3)若,求的最大值和最小值.
已知函数 (Ⅰ)若是从三个数中任取的一个数,是从四个数中任取的一个数,求为偶函数的概率; (Ⅱ)若,是从区间任取的一个数,求方程有实根的概率.
已知为第三象限角,. (1)化简(2)若,求的值