在“五·一”黄金周期间,小明、小亮等同学随家人一同到江郎山游玩.下面买门票时,小明与他爸爸的对话:问题:(1)小明他们一共去了几个成人?几个学生? (2)请你帮小明算一算,用哪种方式买票更省钱?并说明理由.
(本题满分12分, 第(1)小题4分,第(2)小题4分,第(3)小题4分)如图,已知等腰梯形ABCD中,AD∥BC,AD=1,BC=3,AB=CD=2,点E在BC边上,AE与BD交于点F,∠BAE=∠DBC,(1)求证:△ABE∽△BCD;(2)求tan∠DBC的值;(3)求线段BF的长.
如图,某人在C处看到远处有一凉亭B,在凉亭B正东方向有一棵大树A,这时此人在C处测得B在北偏西45°方向上,测得A在北偏东35°方向上.又测得A、C之间的距离为100米,求A、B之间的距离.(精确到1米).(参考数据:sin35°≈0.574,cos35°≈0.819,tan35°≈0.700)
如图,已知点E在平行四边形ABCD的边AD上,AE=3ED,延长CE到点F,使得EF=CE,设=,=,试用、分别表示向量和.
(本题满分10分, 第(1)小题6分,第(2)小题4分)已知二次函数的图像经过点A(0,4)和B(1,-2).(1)求此函数的解析式;并运用配方法,将此抛物线解析式化为y=a(x+m)2+k的形式; (2)写出该抛物线顶点C的坐标,并求出△CAO的面积.
解方程:-=2.