、一个邮递员骑自行车在规定时间内把特快专递送到某单位。他每小时行15千米,可以早到24分钟,如果每小时行12千米,就要迟到15分钟。原定的时间是多少?他去的单位有多远?
已知:如图,AB是⊙O的直径,CD是⊙O的弦,且AB⊥CD,垂足为E,连接OC,OC=5.(1)若CD=8,求BE的长;(2)若∠AOC=150°,求扇形OAC的面积
如图所示,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合. (1)三角尺旋转了 度。 (2)连接CD,试判断△CBD的形状; (3)求∠BDC的度数。
在一只不透明的袋中,装着标有数字3,4,5,7的质地、大小均相同的小球,小明和小东同时从袋中随机各摸出1个球,并计算这两球上的数字之和,当和小于9时小明获胜,反之小东获胜.(1)请用树状图或列表的方法,求小明获胜的概率;(2)这个游戏公平吗?请说明理由.
解方程:(1)x2-4x-2=0. (2)2x2+3x-5=0
如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,DE⊥DB交AB于点E,设⊙O是△BDE的外接圆.(1)求证:AC是⊙O的切线;(2)若DE=2,BD=4,求AE的长.