如图,抛物线y=x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(-1,0).⑴求抛物线的解析式及顶点D的坐标;判断△ABC的形状,证明你的结论;点M(m,0)是x轴上的一个动点, 当CM+DM的值最小时,求m的值.
如图,直线 y = − x + 4 与 x 轴交于点 B ,与 y 轴交于点 C ,抛物线 y = − x 2 + bx + c 经过 B , C 两点,与 x 轴另一交点为 A .点 P 以每秒 2 个单位长度的速度在线段 BC 上由点 B 向点 C 运动(点 P 不与点 B 和点 C 重合),设运动时间为 t 秒,过点 P 作 x 轴垂线交 x 轴于点 E ,交抛物线于点 M .
(1)求抛物线的解析式;
(2)如图①,过点 P 作 y 轴垂线交 y 轴于点 N ,连接 MN 交 BC 于点 Q ,当 MQ NQ = 1 2 时,求 t 的值;
(3)如图②,连接 AM 交 BC 于点 D ,当 ΔPDM 是等腰三角形时,直接写出 t 的值.
如图, ΔABC 是等腰直角三角形, ∠ ACB = 90 ° , D 是射线 CB 上一点(点 D 不与点 B 重合),以 AD 为斜边作等腰直角三角形 ADE (点 E 和点 C 在 AB 的同侧),连接 CE .
(1)如图①,当点 D 与点 C 重合时,直接写出 CE 与 AB 的位置关系;
(2)如图②,当点 D 与点 C 不重合时,(1)的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;
(3)当 ∠ EAC = 15 ° 时,请直接写出 CE AB 的值.
如图,点 M 是矩形 ABCD 的边 AD 延长线上一点,以 AM 为直径的 ⊙ O 交矩形对角
线 AC 于点 F ,在线段 CD 上取一点 E ,连接 EF ,使 EC = EF .
(1)求证: EF 是 ⊙ O 的切线;
(2)若 cos ∠ CAD = 3 5 , AF = 6 , MD = 2 ,求 FC 的长.
某公司研发了一款成本为50元的新型玩具,投放市场进行试销售.其销售单价不低于成本,按照物价部门规定,销售利润率不高于 90 % ,市场调研发现,在一段时间内,每天销售数量 y (个 ) 与销售单价 x (元 ) 符合一次函数关系,如图所示:
(1)根据图象,直接写出 y 与 x 的函数关系式.
(2)该公司要想每天获得3000元的销售利润,销售单价应定为多少元?
(3)销售单价为多少元时,每天获得的利润最大,最大利润是多少元?
如图,一次函数 y = k 1 x + b 的图象与 x 轴、 y 轴分别交于 A , B 两点,与反比例函数 y = k 2 x 的图象分别交于 C , D 两点,点 C ( 2 , 4 ) ,点 B 是线段 AC 的中点.
(1)求一次函数 y = k 1 x + b 与反比例函数 y = k 2 x 的解析式;
(2)求 ΔCOD 的面积;
(3)直接写出当 x 取什么值时, k 1 x + b < k 2 x .