台州市江南汽车城销售某种型号的汽车,每辆进货价为25万元,市场调研表明:当销售价为29万元时,平均每周能售出8辆,而当销售价每降低0.5万元时,平均每周能多售出4辆.如果设每辆汽车降价万元,每辆汽车的销售利润为万元.(销售利润销售价进货价)(1)求与的函数关系式;在保证商家不亏本的前提下,写出的取值范围;(2)假设这种汽车平均每周的销售利润为万元,试写出与之间的函数关系式;(3)当每辆汽车的定价为多少万元时,平均每周的销售利润最大?最大利润是多少?
已知二次函数的图象以A(-1,4)为顶点,且过点B(2,-5). (1)求该函数的关系式; (2)求该函数图象与坐标轴的交点坐标.
如图,在△ABC中, (1)作△ABC的外接圆(只需作出图形,并保留作图痕迹); (2)若△ABC是直角三角形,两直角边分别为6,8,求它的外接圆半径.
已知抛物线的函数关系式:(其中是自变量), (1)若点P(2,3)在此抛物线上, ①求a的值; ②若a>0,且一次函数的图象与此抛物线没有交点,请你写出一个符合条件的一次函数关系式(只需写一个,不必写出过程); (2)设此抛物线与轴交于点A(x1,0),B(x2,0).若x1<<x2,且抛物线的顶点在直线x=的右侧,求的取值范围.
在中,,点D为AB的中点,P为AC边上一动点。沿着PD所在的直线翻折,点B的对应点为E. (1)若,求AP; (2)若与重合部分的面积等于面积的,求AP的长.
如图,在△ABC中,AB=AC,∠DAC是△ABC的一个外角.实践与操作: 根据要求尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法). (1)作∠DAC的平分线AM; (2)作线段AC的垂直平分线,与AM交于点F,与BC边交于点E,连接AE、CF.判断四边形AECF的形状并加以证明.