某区教育局为了了解学生参加阳光体育活动的情况,对某校学生进行随机抽样调查,其中一个问题是“你平均每天参加阳光体育活动的时间是多少?”,共有4个选项: A.小时以上 B.~小时 C.~小时 D.小时以下图1、2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了多少名学生? (2)在图中将选项B的部分补充完整; (3)若该校有名学生,你估计全校可能有多少名学 生平均每天参加体育活动的时间在小时以下.
已知抛物线(). (1)求抛物线与轴的交点坐标; (2)若抛物线与轴的两个交点之间的距离为2,求的值; (3)若一次函数的图象与抛物线始终只有一个公共点,求一次函数的解析式.
晓东在解一元二次方程时,发现有这样一种解法: 如:解方程. 解:原方程可变形,得.,,. 直接开平方并整理,得. 我们称晓东这种解法为“平均数法”. (1)下面是晓东用“平均数法”解方程时写的解题过程. 解:原方程可变形,得.,. 直接开平方并整理,得¤. 上述过程中的“”,“” ,“☆”,“¤”表示的数分别为_____,_____,_____,_____. (2)请用“平均数法”解方程:.
已知二次函数. (1)若点与在此二次函数的图象上,则(填 “>”、“=”或“<”); (2)如图,此二次函数的图象经过点,正方形ABCD的顶点C、D在x轴上, A、B恰好在二次函数的图象上,求图中阴影部分的面积之和.
如图,AB为O的直径,射线AP交O于C点,∠PCO的平分线交O于D点,过点D作交AP于E点. (1)求证:DE为O的切线; (2)若,,求直径的长.
如图,用长为20米的篱笆恰好围成一个扇形花坛,且扇形花坛的圆心角小于180°,设扇形花坛的半径为米,面积为平方米.(注:的近似值取3) (1)求出与的函数关系式,并写出自变量的取值范围; (2)当半径为何值时,扇形花坛的面积最大,并求面积的最大值.