设命题:关于x的函数为增函数;命题:不等式对一切正实数均成立. (1)若命题为真命题,求实数的取值范围;(2)命题“或”为真命题,且“且”为假命题,求实数的取值范围.
(本小题满分16分)已知函数 , . (Ⅰ)当时,求曲线在点处的切线方程; (Ⅱ)当时,求函数的单调区间; (Ⅲ)当时,函数在上的最大值为,若存在,使得 成立,求实数b的取值范围.
(本小题满分14分)已知命题抛物线的焦点在椭圆上.命题直线经过抛物线的焦点,且直线过椭圆的左焦点,是真命题.(Ⅰ)求直线的方程;(Ⅱ)直线与抛物线相交于、,直线、分别切抛物线于、,求、的交点的坐标.
(本小题满分14分)设函数,,其图象在点处的切线与直线垂直,导函数的最小值为.(1)求的值;(2)求函数的单调递增区间,并求函数在上的最大值和最小值.
(本小题满分14分)已知命题:实数满足:方程()表示双曲线;命题:实数满足方程表示焦点在轴上的椭圆,且是的必要不充分条件,求实数的取值范围。
已知椭圆的离心率是,过椭圆上一点作直线交椭圆于两点,且斜率分别为,若点关于原点对称,则的值为 .