.(本题14分)在数列中,,,.(Ⅰ)证明数列是等比数列;(Ⅱ)求数列的前项和.
如图,正方形AA1D1D与矩形ABCD所在平面互相垂直,AB=2AD=2,点E为AB上一点(I) 当点E为AB的中点时,求证;BD1//平面A1DE(II)求点A1到平面BDD1的距离;(III) 当时,求二面角D1-EC-D的大小.
某电视台有A、B两种智力闯关游戏,甲、乙、丙、丁四人参加,其中甲乙两人各自独立进行游戏A,丙丁两人各自独立进行游戏B.已知甲、乙两人各自闯关成功的概率均为,丙、丁两人各自闯关成功的概率均为.(I )求游戏A被闯关成功的人数多于游戏B被闯关成功的人数的概率;(II) 记游戏A、B被闯关成功的总人数为,求的分布列和期望.
已知向量.(I )当m//n时,求的值;(II)已知在锐角ΔABC中,a, b, c分别为角A,B,C的对边,,函数,求的取值范围
盒子里装有6件包装完全相同的产品,已知其中有2件次品,其余4件是合格品。为了找到2件次品,只好将盒子里的这些产品包装随机打开检查,直到两件次品被全部检查或推断出来为止。(1)求经过3次检查才将两件次品检查出来的概率;(2)求两件次品被全部检查或推断出来所需检查次数恰为4次的概率。
2010年11月广州成功举办了第十六届亚运会。在华南理工大学学生会举行的亚运知识有奖问答比赛中,甲、乙、丙同时回答一道有关亚运知识的问题,已知甲回答对这道题目的概率是,甲、丙两人都回答错的概率是,乙、丙两人都回答对的概率是.(1)求乙、丙两人各自回答对这道题目的概率.(2)(理)求回答对这道题目的人数的随机变量的分布列和期望.