某校高三数学竞赛考试后,对90分以上的成绩进行统计,其频率分布直方图如图所示、。若130~140分数段的人数为2人。(1)请估计一下这组数据的平均数M;(2)现根据初赛成绩从第一组和第五组(从低分段到高分段依次为第一组、第二组、…、第五组)中任意选出两人,形成帮扶小组。若选出的两人成绩差大于20,则称这两人为“黄金搭档组”,试求选出的两人为“黄金搭档组”的概率。
已知函数(Ⅰ)求函数的最大值;(Ⅱ)当时,求证:.
用一枚质地均匀的硬币,甲、乙两人做抛掷硬币游戏,甲抛掷4次,记正面朝上的次为;乙抛掷3次,记正面朝上的次为.(Ⅰ)分别求和的期望;(Ⅱ)规定:若>,则甲获胜;否则,乙获胜.求甲获胜的概率.
已知函数.(Ⅰ)求函数的最小正周期;(Ⅱ)若函数在[-,]上的最大值与最小值之和为,求实数的值.
袋中有除颜色外完全相同的红、黄、白三种颜色的球各一个,从中每次任取1个.有放回地抽取3次,求: (1)3个全是红球的概率. (2)3个颜色全相同的概率. (3)3个颜色不全相同的概率. (4)3个颜色全不相同的概率.
由经验得知,在某商场付款处排队等候付款的人数及概率如下表:
(1)至多有2人排队的概率是多少? (2)至少有2人排队的概率是多少?