某校高三数学竞赛考试后,对90分以上的成绩进行统计,其频率分布直方图如图所示、。若130~140分数段的人数为2人。(1)请估计一下这组数据的平均数M;(2)现根据初赛成绩从第一组和第五组(从低分段到高分段依次为第一组、第二组、…、第五组)中任意选出两人,形成帮扶小组。若选出的两人成绩差大于20,则称这两人为“黄金搭档组”,试求选出的两人为“黄金搭档组”的概率。
已知数列,.(1)求证:数列为等比数列;(2)数列中,是否存在连续的三项,这三项构成等比数列?试说明理由;(3)设,其中为常数,且,,求.
已知指数函数满足:,定义域为的函数是奇函数。(1)求的解析式;(2)求m,n的值;(3)若对任意的,不等式恒成立,求实数的取值范围。
已知函数的最大值为,的图像的相邻两对称轴间的距离为,与轴的交点坐标为. (1)求函数的解析式;(2)设数列,为其前项和,求.
设中的内角,,所对的边长分别为,,,且,.(1)当时,求角的度数;(2)求面积的最大值.
已知函数的定义域为集合A,集合 B={<0}. (1)当时,求AB; (2)求使BA的实数的取值范围。