若函数在区间上的最小值为3,(1)求常数的值;(2)求此函数当时的最大值和最小值,并求相应的的取值集合。
已知定点A(-2,0),动点B是圆(F为圆心)上一点,线段AB的垂直平分线交BF于P.(1)求动点P的轨迹方程;(2)是否存在过点E(0,-4)的直线l交P点的轨迹于点R,T, 且满足(O为原点).若存在,求直线l的方程;若不存在,请说明理由.
已知,直线与函数的图象都相切于点. (1)求直线的方程及的解析式;(2)若(其中是的导函数),求函数的值域.
某种家用电器每台的销售利润与该电器的无故障使用时间T (单位:年)有关.若T≤1,则销售利润为0元;若1<T≤3,则销售利润为100元;若T>3,则销售利润为200元.设每台该种电器的无故障使用时间T≤1,1<T≤3及T>3这三种情况发生的概率分别为p1,p2,p3,又知p1,p2是方程的两个根,且p2=p3.(1)求p1,p2,p3的值;(2)记表示销售两台这种家用电器的销售利润总和,求的期望.
设是定义在[-1,1]上的偶函数,的图象与的图象关于直线对称,且当x∈[ 2,3 ] 时, 222233.(1)求的解析式;(2)若在上为增函数,求的取值范围;(3)是否存在正整数,使的图象的最高点落在直线上?若存在,求出的值;若不存在,请说明理由
(本小题满分12分)如图,平面平面ABCD,ABCD为正方形,是直角三角形,且,E、F、G分别是线段PA,PD,CD的中点.(1)求证:∥面EFC;(2)求异面直线EG与BD所成的角;(3)在线段CD上是否存在一点Q,使得点A到面EFQ的距离为0.8. 若存在,求出CQ的值;若不存在,请说明理由.