若函数在区间上的最小值为3,(1)求常数的值;(2)求此函数当时的最大值和最小值,并求相应的的取值集合。
已知等差数列中,为的前项和,,.(Ⅰ)求的通项与;(Ⅱ)当为何值时,为最大?最大值为多少?
袋子中装有编号为,,的3个黑球和编号为,的2个红球,从中任意摸出2个球. (Ⅰ)写出所有不同的结果;(Ⅱ)求恰好摸出1个黑球和1个红球的概率;(Ⅲ)求至少摸出1个红球的概率.
在ABC中,a,b,c分别是三个内角A,B,C的对边,设.(Ⅰ)求的值;(Ⅱ)求ABC的面积.
(本小题满分14分)动圆G与圆外切,同时与圆内切,设动圆圆心G的轨迹为。(1)求曲线的方程;(2)直线与曲线相交于不同的两点,以为直径作圆,若圆C与轴相交于两点,求面积的最大值;(3)已知,直线与曲线相交于两点(均不与重合),且以为直径的圆过点,求证:直线过定点,并求出该点坐标。
如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱,,底面为直角梯形,其中BC∥AD, AB⊥AD, ,O为AD中点.(1)求直线与平面所成角的余弦值;(2)求点到平面的距离(3)线段上是否存在点,使得二面角的余弦值为?若存在,求出的值;若不存在,请说明理由.