已知函数,求函数的单调区间和最值。
(本小题满分12分)在中,角A,B,C的对边分别为(I)求的值;(II)若的值。
(本小题满分14分)在数列和中,已知,其中且。(I)若,求数列的前n项和;(II)证明:当时,数列中的任意三项都不能构成等比数列;(III)设集合,试问在区间[1,a]上是否存在实数b使得,若存在,求出b的一切可能的取值及相应的集合C;若不存在,说明理由。
(本小题满分14分) 椭圆短轴的左右两个端点分别为A,B,直线与x轴、y轴分别交于两点E,F,交椭圆于两点C,D。(I)若,求直线的方程;(II)设直线AD,CB的斜率分别为,若,求k的值。
(本小题满分13分)已知,函数,记曲线在点处切线为与x轴的交点是,O为坐标原点。(I)证明:(II)若对于任意的,都有成立,求a的取值范围。
(本小题满分13分)如图,已知四棱柱ABCD—A1B1C1D1中,A1D⊥底面ABCD,底面ABCD是边长为1的正方形,侧棱AA1=2。(I)求证:C1D//平面ABB1A1;(II)求直线BD1与平面A1C1D所成角的正弦值;(Ⅲ)求二面角D—A1C1—A的余弦值。