.(本小题满分13分)在中,角所对的边分别为。已知(Ⅰ)求的值;(Ⅱ)当时,求的长以及的面积的值。
(本大题共14分)一袋中装有分别标记着1,2,3,4数字的4只小球,每次从袋中取出一只球,设每只小球被取到的可能性相同.(1)若每次取出的球不放回袋中,求恰好第三次取到标号为3的球的概率;(2)若每次取出的球放回袋中,然后再取出一只球,现连续取三次球,若三次取出的球中标号最大的数字为,求的概率分布列与期望.
(本大题共14分)已知数列的前n项和,且是与1的等差中项.(1)求数列和数列的通项公式;(2)若,求;(3)若,是否存在使得,并说明理由.
(本大题共14分)已知函数(为常数),若函数的最大值为.(1)求实数的值;(2)将函数的图象向左平移个单位,再向下平移2个单位得到函数的图象,求函数的单调递减区间.
已知函数在处取得极值。(1)求实数的值;(2)若关于的方程在上恰有两个不相等的实数根,求实数的取值范围;(3)证明:。参考数据:。
已知数列满足,且。(1)证明:数列为等比数列;(2)求数列的通项公式;(3)设为非零常数)。试确定的值,使得对任意都有成立。