(本小题满分12分)已知直线与椭圆相交于、两点,是线段上的一点,,且点M在直线上,(Ⅰ)求椭圆的离心率;(Ⅱ)若椭圆的焦点关于直线的对称点在单位圆上,求椭圆的方程。
某工厂为了制造一个实心工件,先画出了这个工件的三视图(如图),其中正视图与侧视图为两个全等的等腰三角形,俯视图为一个圆,三视图尺寸如图所示(单位cm);(1)求出这个工件的体积;(2)工件做好后,要给表面喷漆,已知喷漆费用是每平方厘米1元,现要制作10个这样的工件,请计算喷漆总费用(精确到整数部分).
已知点分别是椭圆的左、右焦点, 点在椭圆上上.(Ⅰ)求椭圆的标准方程;(Ⅱ)设直线若、均与椭圆相切,试探究在轴上是否存在定点,点到的距离之积恒为1?若存在,请求出点坐标;若不存在,请说明理由.
设函数(Ⅰ)当时,求的单调区间;(Ⅱ)若当时,恒成立,求的取值范围.
如图所示,矩形中,,,,且,交于点.(Ⅰ)求证:;(Ⅱ)求三棱锥的体积.
某旅行社为调查市民喜欢“人文景观”景点是否与年龄有关,随机抽取了55名市民,得到数据如下表:
(Ⅰ)判断是否有99.5%的把握认为喜欢“人文景观”景点与年龄有关?(Ⅱ)用分层抽样的方法从喜欢“人文景观”景点的市民中随机抽取6人作进一步调查,将这6位市民作为一个样本,从中任选2人,求恰有1位“大于40岁”的市民和1位“20岁至40岁”的市民的概率.下面的临界值表供参考:
(参考公式:,其中)