(本题满分共14分)已知, 且.(1)求;(2)当时,求函数的值域.
(理)在长方体ABCD—A1B1C1D1,中,AD=AA1=1,AB=2,点E在棱 AD上移动. (1)证明:D1E⊥A1D; (2)当E为AB的中点时,求点E到面ACD1的距离; (3)AE等于何值时,二面角D1—EC—D的大小为。
(文)如图,在Rt△ABC中,已知BC=a,若长为2a的线段PQ以点A为中点,问与的夹角θ取何值时,的值最大?并求出这个最大值。
(理)如图9-6-6,矩形ABCD中,AB=1,BC=a,PA⊥平面ABCD (1)问BC边上是否存在Q点,使⊥,说明理由. (2)问当Q点惟一,且cos<,>=时,求点P的位置.
已知向量=(1,1),向量与向量夹角为,且=-1. (1)求向量; (2)若向量与向量=(1,0)的夹角为,向量=,其中A、C 为△ABC的内角,且A、B、C依次成等差数列.求||的取值范围;
在平面直角坐标系xOy中,点A(-1,-2)、B(2,3)、C(-2,-1)。 求以线段AB、AC为邻边的平行四边形两条对角线的长;设实数t满足 ()·=0,求t的值。