.(本小题满分14分)设抛物线的方程为,为直线上任意一点,过点作抛物线的两条切线,切点分别为,.(1)当的坐标为时,求过三点的圆的方程,并判断直线与此圆的位置关系; (2)求证:直线恒过定点;(3)当变化时,试探究直线上是否存在点,使为直角三角形,若存在,有几个这样的点,若不存在,说明理由.
已知圆方程为: (1)直线过点且与圆交于两点,若,求直线的方程; (2)过圆上一动点作平行于轴的直线,设与轴交点为,若 向量,求动点的轨迹方程.
求过直线与直线的交点,且与点A(0,4)和点B(4,O)距离相等的直线方程.
已知是定义在上的奇函数,且,若时,有成立. (1)判断在上的单调性,并证明; (2)解不等式:; (3)若当时,对所有的恒成立,求实数的取值范围.
已知函数,若在上的最大值为,求的解析式.
设集合,集合. (1)若,求的值;(2)若,求的值.