.(本小题满分14分)三棱柱的直观图及三视图(主视图和俯视图是正方形,左侧图是等腰直角三角形)如图,为的中点. (1)求证:平面; (2)求证:平面; (3)求二面角的正切值.
在△ABC中,角A、B、C所对的边分别是a、b、c,若,且,求△ABC的面积S
(本小题满分12分)已知函数.(1)当时,求函数的单调区间和极值;(2)当时,若对任意,均有,求实数的取值范围;(3)若,对任意、,且,试比较与 的大小.
设各项均为正数的数列{an}的前n项和为Sn,对于任意的正整数n都有等式成立. (1)求数列{an}的通项公式; (2)令数列(其中c为正实数),Tn为数列{bn}的前n项和,若Tn>8对n∈N*恒成立,求c的取值范围.
已知定点及椭圆,过点的动直线与椭圆相交于两点.(Ⅰ)若线段中点的横坐标是,求直线的方程;(Ⅱ)在轴上是否存在点,使为常数?若存在,求出点的坐标;若不存在,请说明理由.
甲、乙两个射手进行射击训练,甲击中目标的概率为,乙击中目标的概率为,每人各射击两发子弹为一个“单位射击组”,若甲击中目标的次数比乙击中目标的次数多,则称此组为“单位进步组”.(1)求一个“单位射击组”为“单位进步组”的概率;(2)现要完成三个“单位射击组”,记出现“单位进步组”的次数为,求的分布列与数学期望.