高三第一学期期末四校联考数学第I卷中共有8道选择题,每道选择题有4个选项,其中只有一个是正确的;评分标准规定:“每题只选一项,答对得5分,不答或答错得0分。”某考生每道题都给出一个答案,已确定有5道题的答案是正确的,而其余选择题中,有1道题可判断出两个选项是错误的,有一道可以判断出一个选项是错误的,还有一道因不了解题意只能乱猜,试求出该考生:(1)得40分的概率 (2)得多少分的可能性最大?(3)所得分数的数学期望
已知函数(a≠0)是奇函数,并且函数f(x)的图象经过点(1,3), (1)求实数a,b的值; (2)求函数f(x)的值域.
已知函数f(x)=lg(x2﹣5x+6)和的定义域分别是集合A、B, (1)求集合A,B; (2)求集合A∪B,A∩B.
已知集合A={x|a﹣1<x<2a+1},B={x|0<x<1} (1)若a=,求A∩B. (2)若A∩B=∅,求实数a的取值范围.
记函数f(x)=log2(2x﹣3)的定义域为集合M,函数g(x)=的定义域为集合N.求: (1)集合M,N; (2)集合M∩N,∁R(M∪N).
已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数. (1)求k的值; (2)若函数y=f(x)的图象与直线y=x+a没有交点,求a的取值范围; (3)若函数h(x)=4f(x)+{\;}^{\frac{1}{2}}x+m•2x﹣1,x∈[0,log23],是否存在实数m使得h(x)最小值为0,若存在,求出m的值;若不存在,请说明理由.