已知数列的前项和。(1)求数列的通项公式;(2)求的最值。
(本小题满分12分)已知抛物线的焦点为,其准线与轴交于点,过作直线与抛物线在第一象限的部分交于两点,其中在之间.直线与抛物线的另一个交点为. (Ⅰ)求的值,求证:点与关于轴对称. (Ⅱ)若的内切圆半径,求的值.
已知数列满足: (1)探究数列是等差数列还是等比数列,并由此求数列的通项公式; (2)求数列的前n项和
(本小题满分12分) 已知矩形与正三角形所在的平面互相垂直, 、分别为棱、的中点,,, (1)证明:直线平面; (2)求二面角的大小.
(本小题共12分) 甲,乙两人进行乒乓球比赛,约定每局胜者得分,负者得分,比赛进行到有一人比对方多分或打满局时停止.设甲在每局中获胜的概率为,且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为. (Ⅰ)求的值; (Ⅱ)设表示比赛停止时比赛的局数,求随机变量的分布列和数学期望.
(文)(本小题14分)已知函数(为实数). (1)当时, 求的最小值; (2)若在上是单调函数,求的取值范围.