如图①,直线与x轴、y轴分别交于B、C两点,点A在x轴负半轴上,且,抛物线经过A、B、C三点,D为线段AB中点,点P(m,n)是该抛物线上的一个动点(其中m>0,n<0),连接DP交BC于点E.(1)写出A、B、C三点的坐标,并求抛物线的解析式;(2) 当△BDE是等腰三角形时,直接写出此时点E的坐标;(3)连结PC、PB(如图②),△PBC是否有最大面积?若有,求出△PBC的最大面积和此时P点的坐标;若没有,请说明理由.
如图,点O、A、B的坐标分别为(0,0)(4,2)(3,0),将△OAB绕点O按逆时针方向旋转后,得到△OCD.(点A转到点C) (1)画出△OCD; (2)C的坐标为; (3)求A点开始到结束所经过路径的长.
如图,在△中,∠>∠,,平分∠. (1)若∠=70°,∠=30°. ①求∠=°;②∠=°. (2)探究:小明认为如果只要知道∠-∠=n°,就能求出∠的度数?请你就这个问题展开探究: ①实验:填表
②结论:当时,试用含的代数式表示∠的度数,并写出推导过程; ③应用:若∠=56°,∠=12°,则∠=°
某学校班主任暑假带领该班三好学生去旅游,甲旅行社说:“如果教师买全票一张,其余学生享受半价优惠” ;乙旅行社说:“教师在内全部按票价的6折优惠” ;若全票价格是240元/张. (1)如果有10名学生,应选择哪个旅行社,并说出理由; (2)当学生人数是多少时,两家旅行社收费一样多.
如图,已知AE∥BD,∠1=3∠2,∠2=25°,求∠C的度数.
如图,直线AB、CD相交于点O,OE平分∠AOD,∠FOC=90°,∠1=40°.求∠2和∠3的度数.