已知平面上一定点C(4,0)和一定直线为该平面上一动点,作,垂足为Q,且((Ⅰ)问点P在什么曲线上?并求出该曲线的方程;(Ⅱ)设直线与(1)中的曲线交于不同的两点A、B,是否存在实数k,使得以线段AB为直径的圆经过点D(0,-2)?若存在,求出k的值,若不存在,说明理由
记函数的定义域为集合,函数的定义域为集合,集合. (Ⅰ)求集合,; (Ⅱ)若,求实数的取值范围.
计算: (Ⅰ) (Ⅱ)
设直线l1:y=k1x+1,l2:y=k2x-1,其中实数k1,k2满足k1k2+1=0. (Ⅰ)证明:直线l1与l2相交;(Ⅱ)试用解析几何的方法证明:直线l1与l2的交点到原点距离为定值.(Ⅲ)设原点到l1与l2的距离分别为d1和d2求d1+d2的最大值
如图:AD=2,AB=4的长方形所在平面与正所在平面互相垂直,分别为的中点. (1)求四棱锥-的体积; (2)求证:平面; (3)试问:在线段上是否存在一点,使得平面平面?若存在,试指出点的位置,并证明你的结论;若不存在,请说明理由.
已知直线: (1)求证:不论实数取何值,直线总经过一定点. (2)为使直线不经过第二象限,求实数的取值范围. (3)若直线与两坐标轴的正半轴围成的三角形面积最小,求的方程.