某校对高三年级800名男生的身高(单位:cm)进行了统计,随机抽取的一个容量为50的样本的频率分布直方图的部分图形如图所示,已知第一组与第八组人数相同,第六组、第七组、第八组人数依次构成等差数列.(1)估计这所学校高三年级全体男生身高180 cm以上(含180 cm)的人数;(2)求第六组、第七组的频率并补充完整频率分布直方图;(3)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为x、y,求满足|x-y|≤5的事件概率.
设、是函数图象上任意两点,且. (1)求的值; (2)若…(其中),求; (3)在(2)的条件下,设(),若不等式…对任意的正整数n恒成立,求实数a的取值范围.
已知几何体的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形. (1)求此几何体的体积的大小; (2)求异面直线DE与AB所成角的余弦值; (3)求二面角A-ED-B的正弦值.
设公差不为0的等差数列的首项为1,且构成等比数列. (1)求数列的通项公式; (2)若数列满足…1-,n∈N*,求的前n项和.
某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需运往地至少72吨的货物,派用的每辆车须满载且只运送一次.派用的每吨甲型卡车须配2名工人,运送一次可得利润450元;派用的每辆乙型卡车须配1名工人,运送一次可得利润350元.问该公司如何派用两类卡车的车辆数可得最大利润?
已知△的三个内角所对的边分别为a,b,c,向量,,且. (1)求角的大小; (2)若,判断△的形状.