(本小题满分12分)在ABC中,所对的边分别为a、b、c,且满足(I)求a的值;(II)求的值。
△ABC的两条高所在直线的方程为2x-3y+1=0和x+y=0,顶点A的坐标为(1,2),求BC边所在直线的方程.
如图,M、N、P分别是正方体ABCD-A1B1C1D1的棱AB、BC、DD1上的点.(1)若=,求证:无论点P在D1D上如何移动,总有BP⊥MN;(2)若D1P:PD=1∶2,且PB⊥平面B1MN,求二面角M-B1N-B的余弦值;(3)棱DD1上是否总存在这样的点P,使得平面APC1⊥平面ACC1?证明你的结论.
已知四棱锥S-ABCD的底面ABCD是正方形,SA⊥底面ABCD,E是SC上的任意一点.(1)求证:平面EBD⊥平面SAC;(2)设SA=4,AB=2,求点A到平面SBD的距离;
如图所示,四棱锥P-ABCD中,PD⊥平面ABCD,PA与平面ABCD所成的角为60°,在四边形ABCD中,∠D=∠DAB=90°,AB=4,CD=1,AD=2.(1)建立适当的坐标系,并写出点B,P的坐标;(2)求异面直线PA与BC所成角的余弦值;(3)若PB的中点为M,求证:平面AMC⊥平面PBC.
如图所示,在三棱锥P-ABC中,PA⊥平面ABC,AB=BC=CA=3,M为AB的中点,四点P、A、M、C都在球O的球面上.(1)证明:平面PAB⊥平面PCM;(2)证明:线段PC的中点为球O的球心