(满分6分)如图的数阵是由一些奇数组成的。(1)形如图框中的四个数有什么关系?(可设第一行的第一个数为x,用含x的代数式表示另外三个数即可)。(2)若这样框中的四个数的和是200,求出这四个数。(3)是否存在这样的四个数,它们的和为2010..若存在,请求出这四个数中最大的数,若不存在请说明理由。
益趣玩具店购进一种儿童玩具,计划每个售价36元,能盈利80﹪,在销售中出现了滞销,于是先后两次降价,售价降为25元。(1)求这种玩具的进价。(2)求平均每次降价的百分率(精确到0.1﹪)。
如图,△ABC中, BE⊥AC于E,AD⊥BC于D.求证:△CDE∽ △CAB
计算:
如图1,已知菱形ABCD的边长为,点A在x轴负半轴上,点B在坐标原点.点D的坐标为(- ,3),抛物线y=ax2+b(a≠0)经过AB、CD两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD以每秒1个单位长度的速度沿x轴正方向匀速平移(如图2),过点B作BE⊥CD于点E,交抛物线于点F,连接DF、AF.设菱形ABCD平移的时间为t秒(0<t< 3 )①是否存在这样的t,使△ADF与△DEF相似?若存在,求出t的值;若不存在,请说明理由;②连接FC,以点F为旋转中心,将△FEC按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x轴与抛物线在x轴上方的部分围成的图形中(包括边界)时,求t的取值范围.(写出答案即可)
为进一步建设秀美、宜居的生态环境,某村欲购买甲、乙、丙三种树美化村庄,已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,现计划用210000元资金,购买这三种树共1000棵.(1)求乙、丙两种树每棵各多少元?(2)若购买甲种树的棵树是乙种树的2倍,恰好用完计划资金,求这三种树各能购买多少棵?(3)若又增加了10120元的购树款,在购买总棵树不变的前提下,求丙种树最多可以购买多少棵?