(本小题满分12分)一动圆和直线相切,并且经过点,(I)求动圆的圆心的轨迹C的方程;(II)若过点P(2,0)且斜率为的直线交曲线C于M,N两点.求证:OM⊥ON.
如图在直三棱柱中已知AB=BC=1,,,D是上的点,且(1)求AD与C1B1所成的角的大小;(2)求二面角的余弦值.
已知的顶点,边上的中线所在的直线方程为,边上的高所在直线的方程为.(1)求的顶点、的坐标;(2)若圆经过不同的三点、、,且斜率为的直线与圆相切于点,求圆的方程.
如图,在四棱锥中,是正方形,平面,,分别是的中点.(1)求证:平面平面;(2)在线段上确定一点,使平面,并给出证明.
(1)求与直线垂直,且与原点的距离为6的直线方程;(2)求经过直线与的交点,且平行于直线的直线方程.
如图所示的几何体中EA平面ABC,BD平面ABC,AC=BC=BD=2AE=,M是AB的中点(1)求证:CM EM;(2)求MC与面EAC所成的角.