(本小题满分14分)若集合具有以下性质:①,;②若,则,且时,.则称集合是“好集”.(Ⅰ)分别判断集合,有理数集是否是“好集”,并说明理由;(Ⅱ)设集合是“好集”,求证:若,则;(Ⅲ)对任意的一个“好集”,分别判断下面命题的真假,并说明理由.命题:若,则必有;命题:若,且,则必有;
在中,,,分别是三内角A,B,C所对的三边,已知.(1)求角A的大小;(2)若,试判断的形状.
已知,且0<<<.(Ⅰ)求的值;(Ⅱ)求.
已知函数(,是不同时为零的常数).(1)当时,若不等式对任意恒成立,求实数的取值范围;(2)求证:函数在内至少存在一个零点.
已知函数,其中为常数,且函数图像过原点.(1)求的值;(2)证明:函数在[0,2]上是单调递增函数;(3)已知函数,求g(x)≥0时x的取值范围.
A、B、C、D、E五位学生的数学成绩x与物理成绩y(单位:分)如下表:
(1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(参考数值: ,)(2)若学生F的数学成绩为90分,试根据(1)求出的线性回归方程,预测其物理成绩(结果保留整数).