如图,在平面直角坐标系中,以轴为始边作两个锐角,它们的终边分别与单位圆交于两点.已知两点的纵坐标分别为.(1)求的值;(2)求角的大小.
如图,已知椭圆 x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 过点 ( 1 , 2 2 ) ,离心率为 2 2 ,左、右焦点分别为 F 1 , F 2 .点 P 为直线 l : x + y = 2 上且不在 x 轴上的任意一点,直线 P F 1 和 P F 2 与椭圆的交点分别为 A , B 和 C , D , O 为坐标原点.
(I)求椭圆的标准方程; (II)设直线 P F 1 、 P F 2 的斜线分别为 k 1 , k 2 . (i)证明: 1 k 1 - 3 k 2 = 2 ; (ii)问直线 l 上是否存在点 P ,使得直线 O A , O B , O C , O D 的斜率 k O A , k O B , k O C , k O D 满足 k O A + k O B + k O C + k O D = 0 ?若存在,求出所有满足条件的点 P 的坐标;若不存在,说明理由.
在如图所示的几何体中,四边形 A B C D 是正方形, M A ⊥ 平面 A B C D , P D / / M A , E 、 G 、 F 分别为 M B 、 P B 、 P C 的中点,且 A D = P D = 2 M A .
(I)求证: 平面 E F G ⊥ 平面 P D C ;
(Ⅱ)求三棱锥 P - M A B 与四棱锥 P - A B C D 的体积之比。
一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4. (Ⅰ)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率; (Ⅱ)先从袋中随机取一个球,该球的编号为 m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为 n ,求 n < m + 2 的概率.
一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4. (Ⅰ)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率; (Ⅱ)先从袋中随机取一个球,该球的编号为 m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为 n ,求 n < m + 2 的概率.
.(本小题满分12分)在右图所示的多面体中, 下部为正方体, 点在的延长线上, 且,、分别为和的重心. (1)已知为棱上任意一点,求证:∥面; (2)求二面角的大小.