如图,建立平面直角坐标系,轴在地平面上,轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程表示的曲线上,其中与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1) 求炮的最大射程;(2) 设在第一象限有一飞行物(忽略其大小),其飞行高度为千米,试问它的横坐标不超过多少时,炮弹可以击中它?请说明理由.
如图所示,已知四棱锥 P - A B C D ,底面 A B C D 为菱形, P A ⊥ 平面 A B C D , ∠ A B C = 60 ° , E , F 分别是 B C , P C 的中点.
(1)证明: A E ⊥ P D ; (2)若 H 为 P D 上的动点, E H 与平面 P A D 所成最大角的正切值为 6 2 , 求二面角 E - A F - C 的余弦值.
如图所示,在斜三棱柱A1B1C1—ABC中,底面是等腰三角形,AB=AC,侧面BB1C1C⊥底面ABC.(1)若D是BC的中点.求证:AD⊥CC1;(2)过侧面BB1C1C的对角线BC1的平面交侧棱于M,若AM=MA1,求证:截面MBC1⊥侧面BB1C1C.
如图所示,直三棱柱ABC—A1B1C1中,B1C1=A1C1,AC1⊥A1B,M、N分别是A1B1、AB的中点.(1)求证:C1M⊥平面A1ABB1;(2)求证:A1B⊥AM;(3)求证:平面AMC1∥平面NB1C;(4)求A1B与B1C所成的角.
如图所示,在四棱锥P—ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M、N分别为PC、PB的中点.(1)求证:PB⊥DM;(2)求BD与平面ADMN所成的角.
如图所示,已知PA⊥矩形ABCD所在平面,M,N分别是AB,PC的中点.(1)求证:MN⊥CD;(2)若∠PDA=45°.求证:MN⊥平面PCD.