(本题满分10分)用铝合金型材做一个形状如图1所示的矩形窗框,设窗框的一边为xm,窗户的透光面积为ym2,y与x的函数图象如图2所示.(图中顶点横坐标为1,纵坐标为1.5)⑴写出y与x之间的函数关系式,指出当x为何值时,窗户透光面积最大? ⑵当窗户透光面积1.125m2时,窗框的两边长各是多少?
先化简,再求值:,其中a=﹣5.
已知抛物线(1)求证:不论k为任何实数,抛物线与轴总有两个交点;(2)若反比例函数的图象与的图象关于y轴对称,又与抛物线交于点A(n,-3),求抛物线的解析式;(3)若点P是(2)中抛物线上的一点,且点P到两坐标轴的距离相等,求点P的坐标.
已知抛物线C1:的顶点A到轴的距离为3, 与轴交于C、D两点.(1)求顶点A的坐标;(2)若点B在抛物线C1上,且,求点B的坐标.
如图,为⊙O的直径,是弦,且于点E.连接、、.(1)求证:=. (2)若=,=,求⊙O的直径.
某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:.(1)设李明每月获得利润为w(元)(,当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2000元的利润,并且又要减少库存,那么销售单价应定为多少元?