已知四棱锥中,底面为直角梯形,.,,为正三角形,且面面,异面直线与所成的角的余弦值为,为的中点.(Ⅰ)求证:面;(Ⅱ)求点到平面的距离;(Ⅲ)求平面与平面相交所成的锐二面角的大小.
中,是上的点,平分,面积是面积的2倍. (Ⅰ) 求; (Ⅱ)若,,求和的长.
(本小题12分)已知向量,,函数 (Ⅰ)求函数的单调递增区间; (Ⅱ)在中,内角的对边分别为,且,若对任意满足条件的,不等式恒成立,求实数的取值范围.
(本小题满分11分)已知数列的前项和. (1)求数列的通项公式; (2)证明:对任意,都有,使得成等比数列.
(本小题满分12分)已知椭圆,其中为左、右焦点,且离心率,直线与椭圆交于两不同点.当直线过椭圆C右焦点F2且倾斜角为时,原点O到直线的距离为. (Ⅰ)求椭圆C的方程; (Ⅱ)若,当面积为时,求的最大值.
(本小题满分12分)已知直线,双曲线.①若直线与双曲线的其中一条渐近线平行,求双曲线的离心率;②若直线过双曲线的右焦点,与双曲线交于、两点,且,求双曲线方程。