某中学的高二(1)班男同学有名,女同学有名,老师按照分层抽样的方法组建了一个人的课外兴趣小组.(Ⅰ)求某同学被抽到的概率及课外兴趣小组中男、女同学的人数;(Ⅱ)经过一个月的学习、讨论,这个兴趣小组决定选出两名同学做某项实验,方法是先从小组里选出名同学做实验,该同学做完后,再从小组内剩下的同学中选一名同学做实 验,求选出的两名同学中恰有一名女同学的概率;
某商店投入38万元经销某种纪念品,经销期60天,为了获得更多的利润,商店将每天获得的利润投入到次日的经营中,市场调研表明,该商店在经销这一产品期间第天的利润(单位:万元,),记第天的利润率,例如 (Ⅰ)求的值; (Ⅱ)求第天的利润率; (Ⅲ)该商店在经销此纪品期间,哪一天的利润率最大?并求该天的利润率。
如图,在四棱锥P—ABCD中,PA⊥平面ABCD,底面ABCD为直角梯形,∠ABC=∠BAD=90°,AD>BC,E,F分别为棱AB,PC的中点. (I)求证:PE⊥BC;
(II)求证:EF//平面PAD.
某中学举办安全法规知识竞赛,从参赛的高一、高二学生中各抽出人的成绩作为样本.对高一年级的名学生的成绩进行统计,并按分组,得到成绩分布的频率分布直方图(如图). (Ⅰ)若规定60分以上(包括60分)为合格,计算高一年级这次知识竞赛的合格率; (Ⅱ)统计方法中,同一组数据常用该组区间的中点值作为代表,据此,估计高一年级这次知识竞赛的学生的平均成绩; (Ⅲ)若高二年级这次知识竞赛的合格率为60%,由以上统计数据填写下面列联表,并问是否有99%的把握认为“这次知识竞赛的成绩与年级有关系”。
参考数据与公式: 由列联表中数据计算的公式
临界值表
(本小题满分12分)若函数的图象与直线相切,相邻切点之间的距离为. (Ⅰ)求的值; (Ⅱ)若点是图象的对称中心,且,求点的坐标.
已知抛物线C的顶点在原点,焦点为F(0,1),且过点A(2,t), (1)求t的值; (2)若点P、Q是抛物线C上两动点,且直线AP与AQ的斜率互为相反数,试问直线PQ的斜率是否为定值,若是,求出这个值;若不是,请说明理由.