已知函数 (I)求的单调递增区间;(II)在中,三内角的对边分别为,已知,成等差数列,且,求的值.
已知函数 (1)求函数的值域; (2)若时,函数的最小值为,求的值和函数的最大值。
已知函数, (1)当时,判断并证明的奇偶性; (2)是否存在实数,使得是奇函数?若存在,求出;若不存在,说明理由。
已知是定义在上的奇函数,且当时,. (Ⅰ)求的表达式; (Ⅱ)判断并证明函数在区间上的单调性.
把长为10cm的细铁丝截成两段,各自围成一个正方形,求这两个正方形面积之和的最小值。
已知且,数列满足,,(),令, ⑴求证: 是等比数列; ⑵求数列的通项公式; ⑶若,求的前项和.