(本小题满分12分)直线经过点,且与圆相交,截得弦长为,求的方程.
(本题16分)已知{an}是等差数列,且a1=2,a1+a2+a3=12.(1)求数列{an}的通项公式;(2)令bn= an3n,求{bn}的前n项的和Tn.
(本题14分)已知△ABC中,角A,B,C,所对的边分别是a,b,c,且2(a2+b2-c2)=3ab.(1)求cosC;(2)若c=2,求△ABC面积的最大值.
(本题14分)已知P(2,1),直线l:x-y+4=0.(1)求过点P与直线l平行的直线方程;(2)求过点P与直线l垂直的直线方程.
已知两条不同直线m,l,两个不同平面α,β,给出下列命题:①若l垂直于α内的两条相交直线,则l⊥α;②若l//α,则l平行于α内的所有直线;③若mα,lβ且l⊥m,则α⊥β;④若lβ,l⊥α,则α⊥β;⑤若mα,lβ且α//β,则m//l.其中正确命题的序号是 .(把你认为正确命题的序号都填上)
过抛物线的对称轴上的定点,作直线与抛物线相交于两点(1)试证明两点的纵坐标之积为定值;(2)若点是定直线上的任一点,试探索三条直线的斜率之间的关系,并给出证明.