.已知椭圆C1的方程为,双曲线C2的左、右焦点分别为C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点。(Ⅰ)求双曲线C2的方程;(Ⅱ)若直线与椭圆C1及双曲线C2都恒有两个不同的交点,且l与C2的两个交点A和B满足(其中O为原点),求k的取值范围。
(本小题满分12分) 已知函数 (Ⅰ)若在上是增函数,求b的取值范围; (Ⅱ)若在x=1时取得极值,且时,恒成立,求c的取值范围.
如图,在四棱锥P—ABCD中,PA⊥底面ABCD,底面为直角梯形,,且PA=AB=BC=1,AD=2. (Ⅰ)设M为PD的中点,求证:平面PAB; (Ⅱ)求侧面PAB与侧面PCD所成二面角的平面角的正切值.
(本小题满分12分) 将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落过程中它将3次遇到黑色障碍物,最后落入袋或袋中.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是. (Ⅰ)求小球落入袋中的概率; (Ⅱ)在容器入口处依次放入4个小球,求恰好有3个球落入袋中的概率.
(本小题满分l2分) 已知函数. (Ⅰ)求函数的最小正周期及单调递增区间; (Ⅱ)内角的对边长分别为,若求的值.
(本小题满分14分)、 已知函数. (Ⅰ)求证:存在定点,使得函数图象上任意一点关于点对称的点也在函数的图象上,并求出点的坐标; (Ⅱ)定义,其中且,求; (Ⅲ)对于(Ⅱ)中的,求证:对于任意都有.