((本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xoy中,已知曲线C的参数方程是(是参数),现以原点O为极点,x轴正半轴为极轴建立极坐标系,⑴写出曲线C的极坐标方程。⑵如果曲线E的极坐标方程是,曲线C、E相交于A、B两点,求.
如图,在五面体ABCDEF中,,,, (Ⅰ)求异面直线BF与DE所成角的余弦值; (Ⅱ)在线段CE上是否存在点M,使得直线AM与平面CDE所成角的正弦值为?若存在,试确定点M的位置;若不存在,请说明理由.
已知抛物线C关于轴对称,它的顶点在坐标原点,并且经过点 (1)求抛物线C的标准方程 (2)直线过抛物线的焦点F,与抛物线交于A、B两点,线段AB的中点M的横坐标为3,求弦长以及直线的方程。
已知曲线所围成的封闭图形的面积为,曲线的内切圆半径为.记为以曲线与坐标轴的交点为顶点的椭圆. (1)求椭圆的标准方程; (2)设是过椭圆中心的任意弦,是线段的垂直平分线.是上异于椭圆中心的点. (i)若(为坐标原点),当点在椭圆上运动时,求点的轨迹方程; (ii)若是与椭圆的交点,求的面积的最小值.
命题p: ,其中满足条件:五个数的平均数是20,标准差是; 命题q:m≤t≤n ,其中m,n满足条件:点M在椭圆上,定点A(1,0),m、n分别为线段AM长的最小值和最大值。若命题“p或q”为真且命题“p且q”为假,求实数t的取值范围。
如图,已知圆O的直径AB=4,定直线L到圆心的距离为4,且直线L⊥直线AB。点P是圆O上异于A、B的任意一点,直线PA、PB分别交L与M、N点。试建立适当的直角坐标系,解决下列问题: (1)若∠PAB=30°,求以MN为直径的圆方程; (2)当点P变化时,求证:以MN为直径的圆必过圆O内的一定点。