(本小题满分12分)如图,是圆的直径,点在圆上,,交于点,平面,,.(1)证明:;(2)求平面与平面所成的锐二面角的余弦值.
某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100],得到如图所示的频率分布直方图.(1)求图中实数a的值;(2)若该校高一年级共有学生640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;(3)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.
已知椭圆C:=1(a>b>0)的离心率为,其左、右焦点分别是F1、F2,过点F1的直线l交椭圆C于E、G两点,且△EGF2的周长为4.(1)求椭圆C的方程;(2)若过点M(2,0)的直线与椭圆C相交于两点A、B,设P为椭圆上一点,且满足+=t (O为坐标原点),当|-|<时,求实数t的取值范围.
已知直线l:y=x+,圆O:x2+y2=5,椭圆E:=1(a>b>0)的离心率e=,直线l被圆O截得的弦长与椭圆的短轴长相等.(1)求椭圆E的方程;(2)过圆O上任意一点P作椭圆E的两条切线,若切线都存在斜率,求证:两切线的斜率之积为定值.
已知以点C (t∈R,t≠0)为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点.(1)求证:△AOB的面积为定值;(2)设直线2x+y-4=0与圆C交于点M、N,若|OM|=|ON|,求圆C的方程;(3)在(2)的条件下,设P、Q分别是直线l:x+y+2=0和圆C的动点,求|PB|+|PQ|的最小值及此时点P的坐标.
已知圆C:x2+y2+x-6y+m=0与直线l:x+2y-3=0.(1)若直线l与圆C没有公共点,求m的取值范围;(2)若直线l与圆C相交于P、Q两点,O为原点,且OP⊥OQ,求实数m的值.