已知,,,试比较 与的大小.
某公司研制出一种新型药品,为测试该药品的有效性,公司选定个药品样本分成三组,测试结果如下表:
已知在全体样本中随机抽取个,抽到组药品有效的概率是. (1)现用分层抽样的方法在全体样本中抽取个测试结果,问应在组抽取样本多少个? (2)已知,,求该药品通过测试的概率(说明:若药品有效的概率不小于%,则认为测试通过).
数列的前n项和记为,,点在直线上,n∈N*. (1)求证:数列是等比数列,并求数列的通项公式; (2)设,是数列的前n项和,求的值.
在中,角A,B,C所对边分别为a,b,c,且向量,,满足 (1)求角C的大小; (2)若成等差数列,且,求边的长
已知函数,. (1)若,求函数的单调区间; (2)若恒成立,求实数的取值范围; (3)设,若对任意的两个实数满足,总存在,使得成立,证明:.
已知椭圆C:的离心率为,左、右焦点分别为,点G在椭圆C上,且,的面积为3. (1)求椭圆C的方程: (2)设椭圆的左、右顶点为A,B,过的直线与椭圆交于不同的两点M,N(不同于点A,B),探索直线AM,BN的交点能否在一条垂直于轴的定直线上,若能,求出这条定直线的方程;若不能,请说明理由.