(本小题满分14分)已知函数且(1)求的值;(2)判定的奇偶性;
(本小题满分10分)选修4~1:几何证明选讲 如图,AB是⊙O的一条切线,切点为B,直线ADE,CFD,CGE都是⊙O的割线,已知AC=AB. (1)若CG=1,CD=4,求的值; (2)求证:FG//AC.
(本小题满分12分)已知函数f(x)=(e为自然对数的底数).(1)若a<1,求函数f(x)的单调区间;(2)若a=1,函数φ(x)=xf(x)+t f ′(x)+,存在实数x1,x2∈[0,1],使 2φ(x1)<φ(x2)成立,求实数t的取值范围.
(本小题满分12分)己知A、B、C是椭圆C:(a>b>0)上的三点,其中点A的坐标为,BC 过椭圆的中心,且,.(1)求椭圆C的方程;(2)过点(0,t)的直线l(斜率存在时)与椭圆C交于P,Q两点,设D为椭圆C与y轴负半轴的交点,且,求实数t的取值范围.
(本小题满分12分)某班同学利用国庆节进行社会实践,对 [25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:(1)补全频率分布直方图并求n、a、p的值;(2)从[40,50)岁年龄段的“低碳族”中采用分层抽样法抽取18人参加户外低碳体验活动,其中选取3人作为领队,记选取的3名领队中年龄在[40,45)岁的人数为X,求X的分布列和期望E(X).
(本小题满分12分)在三棱锥M-ABC中,AB=2AC=2,MA=MB=,AB=4AN,AB^AC,平面MAB^平面ABC,S为BC的中点.(1)证明:CM^SN;(2)求SN与平面CMN所成角的大小.